If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2=144u
We move all terms to the left:
5u^2-(144u)=0
a = 5; b = -144; c = 0;
Δ = b2-4ac
Δ = -1442-4·5·0
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-144}{2*5}=\frac{0}{10} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+144}{2*5}=\frac{288}{10} =28+4/5 $
| 252x+1=1253x+4 | | v-8=10 | | 2t^2+30=16t | | x^2+x/2+3x=7x | | A=(5x+8)(12x-8) | | 2t^2+30=16 | | t+-1=10 | | h3=4 | | h3= 4 | | x(6x+7)=0 | | c+-2=-9 | | (x+5)2–16=0 | | n3+ 9= 10 | | 25w=42 | | 3(x^2-6x+8)^(2/3)=0 | | 2w/5=40 | | -x+8=7x-80 | | 10x=6x+42 | | 3x+7+3-8=7x+22 | | 6x=4x+42 | | b2–5=-5 | | 12-6r=2r=36 | | 3x×5=3x×5 | | -12x-4=-16+8 | | 36=20–2q | | 2z/7+9=4 | | |7x+15=20 | | 1/5y+3=7/10 | | -1=1+u3 | | 4e+16=12e+16 | | -10(p+11)=10 | | E(5)=40h |